Parametric model order reduction of damped mechanical systems via the block Arnoldi process

نویسندگان

  • Yao Yue
  • Karl Meerbergen
چکیده

This paper proposes a block Arnoldi method for parameterized model order reduction. This method works when design parameters have only low-rank impacts on the system matrix. The method preserves all design parameters in the reduced model and is easy to implement. Numerical results show that the block Arnoldi process outperforms some existing methods up to a factor of ten.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two-directional Arnoldi process and its application to parametric model order reduction

We consider a two-directional Krylov subspace Kk(A[j], b[j]), where besides the dimensionality k of the subspace increases, the matrix A[j] and vector b[j] which induce the subspace may also augment. Specifically, we consider the case where the matrix A[j] and the vector b[j] are augmented by block triangular bordering. We present a two-directional Arnoldi process to efficiently generate a sequ...

متن کامل

Error Estimation for Arnoldi-based Model Order Reduction of MEMS

In this paper we present two different, heuristic error estimates for the Pade-type approximation of transfer functions via an Arnoldi algorithm. We first suggest a convergence criterion between two successive reduced models of the order and . We further propose to use the solution of the Lyapunov equations for reduced-order systems as a stop-criterion during iterative model order reduction.

متن کامل

Error Indicators for Fully Automatic Extraction of Heat-Transfer Macromodels for MEMS

In this paper, we present three heuristic error indicators for the iterative model order reduction of electro-thermal MEMS models via the Arnoldi algorithm. Such error indicators help a designer to choose an optimal order of the reduced model, required to achieve a desired accuracy, and hence allow a completely automatic extraction of heattransfer macromodels for MEMS. We first suggest a conver...

متن کامل

Two-sided Arnoldi Algorithm and Its Application in Order Reduction of MEMS

In this paper we introduce a two-sided Arnoldi method that can be used in the reduction of high order systems, based on a two-sided Krylov subspace approach. The presented method can find better results than the well known Arnoldi algorithm and leads to the same reduced models as the (numerically unstable and more complicated) Lanczos algorithm. The new algorithm can find two orthogonal bases f...

متن کامل

Krylov-Subspace-Based Order Reduction Methods Applied to Generate Compact- Electro-Thermal Models for MEMS

The high power dissipation density in today’s miniature electronic/mechanical systems makes on-chip thermal management crucial. In order to achieve quick-to-evaluate, yet accurate electro-thermal models, needed for the thermal management of microsystems, model order reduction is necessary. In this paper, we use Krylov-subspace methods for the order reduction of a electro-thermal MEMS model, ill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2013